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Abstract. Laguerre-Gaussian (LG) modes, carrying the orbital angular momentum of light, are critical for
important applications, such as high-capacity optical communications, superresolution imaging, and
multidimensional quantum entanglement. Advanced developments in these applications demand reliable
and tunable LG mode laser sources, which, however, do not yet exist. Here, we experimentally
demonstrate highly efficient, highly pure, broadly tunable, and topological-charge-controllable LG modes
from a Janus optical parametric oscillator (OPO). The Janus OPO featuring a two-faced cavity mode is
designed to guarantee an efficient evolution from a Gaussian-shaped fundamental pump mode to a
desired LG parametric mode. The output LG mode has a tunable wavelength between 1.5 and 1.6 μm with
a conversion efficiency >15%, a controllable topological charge up to 4, and a mode purity as high as
97%, which provides a high-performance solid-state light source for high-end demands in multidimensional
multiplexing/demultiplexing, control of spin-orbital coupling between light and atoms, and so on.
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1 Introduction
Laguerre-Gaussian (LG) modes with unique spiral wavefronts are
the paraxial solutions of the scalar Helmholtz equation in cylin-
drical coordinates, which can be distinguished by an azimuthal
index l and a radial index p, i.e., LGðl; pÞ. In 1992, Allen et al.
demonstrated that an LG mode carries an orbital angular momen-
tum (OAM) of lℏ per photon,1 where l is called the topological
charge (TC). Their pioneering work has significantly boosted the
applications of LG modes from optical trapping and optical
tweezer to optical communications, superresolution imaging,
precision measurement, quantum information processing, and
so on.2–9 In turn, these high-end demands have triggered the

developments of LG-mode laser sources in recent years.10–17

Almost all the applications benefit from the high purity of an
LG laser source, such as improved signal-to-noise ratio in rotation
measurement, enhanced resolution in fluorescence imaging, and
optimized coupling with an OAM photonic chip.18–20 High-power
laser output of LG mode could provide an effective way to
decrease thermal noises in gravitational-wave detection.21 In par-
ticular, LG laser sources are expected to bewavelength-tunable for
wavelength division multiplexing in OAM-based high-capacity
optical communication, investigation of spin-orbital coupling with
various atoms in quantum storage and isolation, and excitations of
versatile fluorescence in superresolution imaging.19,22–25 However,
these advanced applications are severely hampered by the limited
wavelength bandwidth and mode purity in previous LG mode la-
sers. A reliable and broadband-tunable LGmode laser source does
not yet exist.
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The optical parametric oscillator (OPO) has been recognized as
one of the most popular tunable sources.26–29 A pump wave with
frequency of ωp generates two parametric waves,30 i.e., signal
and idler waves at the frequencies of ωs and ωi, respectively,
through the second-order nonlinear downconversion process.
It satisfies the energy conservation of ωp ¼ ωi þ ωs. By con-
trolling the phase-matching condition for momentum conserva-
tion, one can obtain wavelength-tunable output of the generated
parametric waves.31 An OPO system is capable of outputting
broad wavelengths covering ultraviolet (UV), visible, and infra-
red bands, which makes it an excellent candidate for broadband
output of high-quality LG modes. There are two reported con-
figurations. One is to build a traditional OPO outputting a

Gaussian mode, and then convert it to an LGmode using a spiral
phase plate, a fork grating, a Q-plate, a vector vortex waveplate
(VVW), or a spatial light modulator [Fig. 1(a)].6,32–35 Because
these devices only introduce a spatial phase modulation, the
generated beam is actually a superposition of various higher-
order LG modes with the same azimuthal index l but a different
radial index p, i.e.,

P
pLGðl; pÞ. Although the conversion effi-

ciency of a commercial device reaches 95%, it suffers from poor
mode purity,36,37 and generally, the higher the TC is, the lower
mode purity becomes (typically 80% and 60% for LG(1, 0) and
LG(2, 0) modes, respectively). See Note 1 in the Supplementary
Material for details. The other approach is to oscillate an LG
mode inside the OPO cavity [Fig. 1(b)] by utilizing the fact that

Fig. 1 Different cavity modes in OPO and Janus OPO designs. (a) A Gaussian-pumped OPO
oscillating in a fundamental Gaussian mode. (b) An LG-pumped OPO with an LG cavity mode
and an LG output mode. (c) A specially designed Janus OPO that is pumped by a Gaussian mode
but outputs an LG mode. (d) A one-round-trip mode conversion without an imaging system. An LG
mode passing through a VVW produces a hollow Gaussian beam, which evolves into a Gaussian-
like mode after a certain propagation. However, the hollow Gaussian beam cannot recover itself
without the equivalent lens as in panel (e) and neither can the LGmode. (e) A one-round-trip mode
conversion inside a Janus OPO. The input coupler with a radius curvature of R1 can be seen as an
equivalent lens with a focusing length of 2f ¼ R1. Therefore, the light field after the VVW, which is
set at the curvature center, will recover itself at the same position after being reflected by the input
coupler.
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LG modes are Eigen cavity modes,38,39 which could also extend
the output wavelength.40 In comparison to a Gaussian-mode
OPO system, the frequency conversion of an LG mode is less
efficient because its donut-shaped profile has a much lower
power density. In addition, the output mode quality is not as
good as had been hoped. The fiber laser is another potential
platform for broadband output of LG mode, but it suffers from
low mode purity as well.41,42

Here, we propose and experimentally demonstrate a Janus
OPO based on quasi-phase-matching (QPM) configuration43–47

for highly efficient output of highly pure, broadly tunable,
and TC-controllable LG modes [Fig. 1(c)]. The Janus cavity that
we have previously studied features two-faced transverse-mode
structures (like the god Janus in ancient Roman mythology),
which combines the advantages of both Gaussian and LG cavity
modes.48 The nonlinear crystal, i.e., a periodically poled lithium
niobate (PPLN) crystal, is set next to the front mirror to fully
utilize the Gaussian-like front face of Janus cavity mode for high
conversion efficiency. Most importantly, due to the introduction
of an intracavity imaging system, the generated parametric light
is naturally converted into a designed LGmode at the output port
of the cavity. The cavity loss is significantly reduced because no
additional spatial mode filter is used inside the cavity. The
experimental results present a high-performance LG mode
source beyond the existing methods. For the generated signal
LG beam, the wavelength is tunable between 1.5 and 1.6 μm,
the conversion efficiency is >15%, the TC is controllable up
to 4, and most importantly, the mode purity can reach 97%.

2 Janus Cavity Theory
As shown in Fig. 1(c), the Janus cavity has a two-faced cavity
mode, distinguishing itself from the traditional cavity mode con-
figuration [Figs. 1(a) and 1(b)]. The front face at the input mirror
has a Gaussian profile to achieve a better conversion efficiency
because of its higher power density relative to the LG mode. The
back face at the end mirror is a donut-shaped LG profile, which
guarantees the direct output of a high-purity LG mode. The key
question is how to smoothly evolve the cavity mode from a
Gaussian profile to an LG profile, and vice versa, without break-
ing the cavity mode reversibility. The general idea is to directly
put a spatial phase modulator, such as a VVW, into the cavity to
complete the mode conversion.14,49 However, phase modulation
alone is not sufficient to perform a perfect spatial mode conver-
sion due to lack of necessary amplitude modulation. Let us
consider an ideal LG mode at the output mirror. As shown in
Fig. 1(d), it propagates through the VVW, which produces a
beam superimposed by multiple modes in Part I of the Janus
OPO rather than a single mode, as in a traditional cavity.50

This superimposed beam of multiple spatial modes hardly keeps
its profile during free propagation. Therefore, the VVW alone
cannot convert it back into the same LG mode as the initial one
[Fig. 1(d)], which breaks the spatial mode reversibility inside the
cavity. Under this situation, previous reports used an iris to filter
out the unwanted high-order mode, which introduces a substan-
tial cavity loss and severely limits laser performance.14,49

To realize an ideal Janus OPO [Fig. 1(c)], the mode revers-
ibility has to be simultaneously satisfied for multiple modes in
Part I of the cavity.48 The key is to introduce an imaging system
into the cavity. In our experiment, we use a concave front (input)
mirror as an equivalent imaging lens for the compact Janus OPO
design [Fig. 1(c)]. Figure 1(e) shows the transformation of Janus
cavity mode in a round trip. When the imaging system works

properly, the multiple spatial modes will repeat themselves after
passing through the equivalent lens (i.e., being reflected back at
the concave front mirror). Then, the VVW can convert them
back into an ideal LG mode in Part II of the Janus OPO,
and the reversibility condition inside the cavity can therefore
be perfectly fulfilled in principle. In addition, the cavity mode
profile near the front mirror is required to match the pump
Gaussian mode. In our Janus cavity design, the multiple modes
after an LGmode passing through the VVW compose a so-called
hollow-Gaussian beam,50 which naturally evolves into a spatial
profile very close to a Gaussian mode after a certain propagation
distance [Fig. 1(d)]. See Note 3 in the Supplementary Material
for the detailed mathematics in designing a Janus cavity. In com-
parison to previous designs, all the spatial modes during mode
conversion are fully utilized in such a Janus cavity. Therefore, the
cavity loss greatly decreased and the output performance signifi-
cantly improved.

3 Results

3.1 Experimental Setup of the Janus OPO

Figure 2(a) shows the experimental setup of a Janus OPO for
generation of an LG-mode signal beam. Its output wavelength
is designed to be tunable within the optical communication
band. Two concave mirrors form the input and output couplers,
which are coated for high reflectivity at the signal wavelength. A
PPLN crystal serves as the nonlinear medium, which has multi-
ple channels to extend the QPM bandwidth. The pump beam is
generated by a 1064-nm pulsed nanosecond laser and focused
into the crystal with a spot size of 200 μm in diameter, which
matches the size of signal Gaussian-like face inside the crystal
(see Note 4 in the Supplementary Material). Besides the Janus
cavity mode as discussed above, the polarization of the field in
the cavity is also precisely controlled to facilitate the parametric
downconversion and mode conversion. In the PPLN crystal,
both the pump and signal waves polarize vertically to utilize
the biggest nonlinear coefficient d33 of the PPLN crystal for
high conversion efficiency. By changing the temperature and
selecting a channel of the PPLN crystal, the output wavelength
of signal wave can range from 1480 to 1650 nm (see Note 2 in
the Supplementary Material for the details). The next mode
conversion subsystem includes a Faraday rotator (FR), a quarter-
wave plate (QWP), and a VVW (the system has a work band-
width of 1550 nm� 50 nm). The VVW has a distinct q factor,
with its value being a positive multiple of 1/2. In the forward
propagation direction, a TC of l ¼ �2q is loaded onto the signal
wave, which will be canceled when it passes through the VVW
again on its way back. To generate a high-purity LG mode at the
output, the cavity mode in Part I should be reconfigured to form a
superposition of multiple spatial modes, which is automatically
achieved by the Janus cavity design. Here, we use a concave
input coupler and set the VVW at its curvature center, which
composes a symmetric imaging system to satisfy the condition
of multimode reversibility in Part I of the Janus OPO [Fig. 1(e)].
In principle, an ideal LG mode propagates in Part II of the cavity.
Such a stable Janus cavity mode is confirmed by numerical cal-
culations based on the Fox–Li simulating process [Fig. 2(b)].
The cross sections of the Janus modes for different TCs show
how a Gaussian-like mode is naturally transformed to a desired
LG mode (See Appendix A and Note 4 in the Supplementary
Material for the details). It should be noted that the mode
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conversion process requires a circularly polarized signal wave on
the VVW. To fulfill the polarization reversibility in the cavity, we
add an FR and a QWP to accomplish the polarization control (see
Note 5 in the Supplementary Material for the details).

3.2 Performance of the Janus OPO

First, we demonstrate the generation of high-purity LG(1, 0) and
LGð−1,0Þ modes. AVVW with q ¼ 1∕2 is used to introduce a
TC of l ¼ �1. The sign is controlled by the orientation of the
QWP. Under QPM configuration, the vertically polarized pump
beam produces a vertically polarized signal beam in the PPLN
crystal. After passing through the FR, the signal beam has a
45 deg linear polarization. When the fast axis of the QWP ori-
ents vertically (or horizontally), the signal polarization is further
changed to a left- (or right-) circularly polarized one, resulting in
l ¼ 1 (or −1) after the VVW (Fig. 2) (see Note 5 in the
Supplementary Material). The intensity patterns of the output

LG(1, 0) and LGð−1,0Þ modes at 1550 nm showed in Figs. 3(a)
and 3(b) exhibit high-quality donut intensity distribution without
observable sidelobes. Clearly, the undesired higher-order LG
modes (p > 0) are significantly suppressed by the Janus OPO
cavity. Further modal analyses in Figs. 3(a) and 3(b) show that
the generated LG(1, 0) and LGð−1,0Þ modes have mode
purities of 96.6% and 97.0%, respectively (see Note 6 in the
Supplementary Material for the modal analysis process). The
mode purity is greatly enhanced in comparison to the typical
value of ∼80% using a VVW outside the cavity.37 Our specially
designed Janus OPO is also suitable for generating high-order,
high-purity LG modes [Fig. 2(b)]. As a demonstration, VVWs
of q ¼ 1 and q ¼ 2 are used to generate LGð�2,0Þ and
LGð�4,0Þmodes. Since LGð�l; 0Þmodes experience the similar
transverse-mode evolution in the OPO, we only show the results
of LG(2, 0) and LG(4, 0) modes [Figs. 3(c) and 3(d)]. The mode
purities of 95.2% for the output LG(2, 0) mode and 93.7% for the
LG(4, 0) mode are much superior to the 60% and 50% values

Fig. 2 Experimental setup and Janus mode simulation. (a) The PPLN crystal, as the nonlinear
medium, transforms one pump photon into a signal photon and an idle photon through the QPM
parametric downconversion process. The input/output couplers are coated for high reflectivity at
the signal wavelength. The FR, QWP, and VVW form a mode conversion setup inside the cavity.
The QWP alters the vertical polarization of the signal beam to circular polarization so that the
spin-OAM conversion can happen on the VVW to achieve the desired Gaussian-to-LG mode con-
version. The output LG mode can be changed by rotating the QWP or replacing the VVW. FR is
used to keep the signal wave to be vertically polarized inside the PPLN crystal. (b) Janus cavity
modes for l ¼ 1, 2, and 4 and their cross sections at different distances of 0, 25, 50, 75, and
130 mm away from the input coupler.
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using VVWs outside the cavity.37 It should be noted that the
VVWs should be precisely collimated with the optical axis of
the cavity to realize a high-purity output of LG modes. See
Note 7 in the Supplementary Material for details.

In our experiment, the output wavelength of the Janus OPO
can be tuned by changing the QPM channel and the temperature
of the PPLN crystal. The Janus OPO shows excellent perfor-
mance within the designed wavelengths ranging from 1500
to 1600 nm. As shown in Fig. 4(a), the conversion efficiency
of the signal LG mode surpasses 10% in most of the working
wavelengths. Under a pump power of 4.2 W, the conversion
efficiencies for LG(1,0), LG(2, 0), and LG(4, 0) modes at
1550 nm reach 15.3%, 15.8%, and 15.6%, respectively. Notably,
the Janus OPO maintains a high conversion efficiency for
high-order LG modes. In comparison to the output performance
of the signal Gaussian mode in a traditional OPO system
[Fig. 4(a)], the slightly decreasing conversion efficiencies for
the outputs of LG modes can be mainly attributed to the limited
mode conversion efficiency of VVWs shown in Table S1 in the
Supplementary Material and the reflection losses from the FR
and QWP. Figure 4(b) compares the power dependence of the
output LG(1,0) mode on the pump power at 1525, 1550, 1575,
and 1600 nm, respectively, whose thresholds are 1.6, 1.1, 1.2,
and 1.5 W, respectively. The differences in the threshold and
conversion efficiency for different wavelengths can be attributed
to the fact that the intracavity optical components are not
uniformly optimized at all the wavelengths. Figure 4(c) depicts
the modal analysis results of the output LG(1, 0) mode at the

wavelengths of 1525 and 1575 nm, which show high mode
purities of 97.1% and 95.9%, respectively. The bandwidth of
this Janus OPO can be further extended using ultrawideband
optical components as intracavity elements.

4 Discussion
We have proposed and experimentally demonstrated a Janus
OPO system for generating highly efficient, highly pure,
broadly tunable, and TC-controllable LG modes. Such a Janus
OPO distinguishes itself by possessing a two-faced cavity
mode, which makes use of the distinct advantages of both
the Gaussian and LG cavity modes. The front (input) face
has a Gaussian profile to achieve the high-efficiency nonlinear
frequency conversion, while its back (output) face is a donut-
shaped LG profile that guarantees the direct output of a desired
high-purity LG mode from the cavity. The key to realizing such
a Janus OPO is the introduction of an imaging system to facili-
tate the perfect intracavity mode conversion. In this work, the
Janus OPO is designed for the Gaussian-to-LG mode conver-
sion of the signal light, which can be easily adjusted to output
an LG mode at the idler wavelength. The conversion efficiency
of the Janus OPO could be further enhanced by use of a double-
pass pump configuration.47 In addition, by selecting proper
optical components, our experimental configuration can be
readily extended to visible and UV wavelength bands, as well
as to generate tunable vector beams and multidimensional
quantum entangled sources. The excellent features of the LG
modes from our Janus OPO (e.g., wavelength tunable between

Fig. 3 TC-controllable generation of high-purity LGðl ; 0Þ modes at the wavelength of 1550 nm.
Modal analyses show high mode purities of 96.6%, 97.0%, 95.2%, and 93.7% for (a) LG(1, 0),
(b) LG(–1, 0), (c) LG(2, 0), and (d) LG(4, 0) modes, respectively. The insets are the intensity
patterns of the corresponding LG modes.
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1.5 and 1.6 μm, conversion efficiency >15%, and mode purity
>97%) can meet the critical requirements of high-level appli-
cations such as high-capacity optical communications, high-
precision sensing and measurements, and superresolution
imaging. In addition, the linewidth of LG modes could be
narrowed using a continuous wave (CW) pump laser, enabling
potential investigation of spin-orbital coupling with various
atoms in quantum applications.

5 Appendix A: Experimental Setup
As shown in Fig. 2(a), a PPLN crystal with dimensions of
25ðxÞ × 12.3ðyÞ × 1ðzÞ mm3 serves as the nonlinear medium.
Both of its end faces have a transmittance >99% in the
1380- to 1800-nm wavelength range. It is mounted inside an
oven with the temperature tunability up to 150°C. The input
coupler (with a radius of curvature of 75 mm) is coated with
a high transmittance (>99%) at 1064 nm and a high reflectivity
(>99%) at 1450 to 1650 nm, while the output coupler (with a
radius of curvature of 125 mm) is coated with a transmittance of
30% at 1450 to 1650 nm. The cavity length is 140 mm, satisfy-
ing the stability condition of a resonator. A pump beam (wave-
length of 1064 nm, repetition rate of 22 kHz, pulse width of
45 ns, linewidth of 5 nm) is generated by a nanosecond-pulsed
fiber laser (YDFLP-M7-3-PM, JPT Co.). It is focused by a lens
into a 200-μm-in-diameter spot inside the crystal. The PPLN
crystal has 10 channels. In the experiment, we use four channels

with periods of 31.02, 30.49, 29.98, and 29.52 μm, respectively.
Under the pumping wavelength of 1064 nm, the output signal
wave with a wavelength bandwidth of 1.4 nm (see Notes 2 and 8
in the Supplementary Material for details) can be tuned from
1480 to 1650 nm in the temperature range from 25°C to
138°C. An FR, a QWP, and a VVW are inserted into the cavity
to achieve the reversible mode conversion inside the cavity.
VVW is a spatially variant half-wave plate whose optical axis
rotates continuously around a singularity point. All their work-
ing wavelength bandwidths are from 1500 to 1600 nm. The
VVW is placed at a distance of 90 mm away from the input
coupler, where the curvature center of the input coupler is, con-
sidering the effective length due to the high refractive index of
the PPLN crystal. VVWs of q ¼ 0.5, 1, 2 have been used to
generate LGðl; 0Þ modes with different TCs. The output inten-
sity patterns are recorded by a laser beam profiler (LBP,
Newport Corp.).

6 Appendix B: Cavity Mode Simulations
The numerical simulations have been carried out based on the
Fox–Li method. A one-round-trip transition of the cavity mode
can be described in what follows. A parametric wave starting
from the input coupler travels a distance of LA and passes
through the VVW with a TC of l (or −l). After traveling a
distance of LB, the parametric wave is reflected by the output
coupler and propagates backward. The TC is canceled when the

Fig. 4 Wavelength tunable high-purity LG modes. (a) Dependence of the conversion efficiencies
of LG modes (l ¼ 1, 2, 4) on the wavelength ranging from 1500 to 1600 nm at a pump power of
4.2 W, showing high conversion efficiencies at the designed bandwidth. (b) Dependences of
output powers of LG(1, 0) mode on the pump power at 1525, 1550, 1575, and 1600 nm, respec-
tively, showing high-quality OPO output performances. (c) Modal analysis for the output LG(1, 0)
mode at the wavelengths of 1525 and 1575 nm, showing the mode purity up to 97.1%.
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parametric wave passes through the VVW along the opposite
direction. Finally, the parametric wave reaches the input mirror
to finish its one-round-trip transition. The parametric wave re-
peats the cycle until a stable cavity mode is formed. Base on
angular spectrum theory, the iterative procedure described above
is calculated step by step using MATLAB programming.
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